Frame Theory

Yue Zhang

This review is based on materials in 2015 IMA summer school: modern harmonic analysis and its applications .

September 10, 2015

Frames and Time-Frequency Analysis

Preconditioning of Finite Frames

Sparse Fourier Transform

Introduction to Phase Retrieval Problem

Frame Definition

Definition: A sequence $\{x_n\}_{n \in N}$ in a Hilbert space H is a frame for H if there exist constants A, B > 0 such that the following *pseudo-Plancherel formula* holds for $\forall x \in H$:

$$A||x||^2 \le \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2 \le B||x||^2.$$

- Plancherel Equality is $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$;
- ► A and B are called frame bounds. If A = B, the frame is called a *tight* frame, if A = B = 1, it's *Parseval frame*.
- A frame is *exact* if it fails to be a frame whenever any single element is deleted from the sequence.
- ONB \Leftrightarrow exact Parseval frame.

Example

- Mercedes frame: Let $H = \mathbb{R}^2$, and set $x_1 = (0, 1)$, $x_2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})$, $x_3 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$, then $\sum_{n=1}^3 |\langle x, x_n \rangle|^2 = \frac{3}{2} ||x||^2$ for all $x \in \mathbb{R}^2$. If we set $c = (2/3)^{1/2}$, then $\{cx_1, cx_2, cx_3\}$ is a tight frame. It's not orthogonal, not a basis (not unique representation).
- ▶ **Trigonometric system:** Let $H = L^2[0,1]$, $\langle f,g \rangle = \int_0^1 f(t)\overline{g(t)}dt$. Then $\{e_n\}_{n \in \mathbb{Z}} = \{e^{2\pi i n t}\}_{n \in \mathbb{Z}}$ is an ONB for H.
- ▶ What's more, it can be shown that, given b < 1, $\{e_{bn}\}_{n \in Z} = \{e^{2\pi i bnt}\}_{n \in Z}$ is a tight frame for $L^2[0, 1]$, with A = B = 1/b.

Properties of FT

- ▶ If $f \in C_c^2(\mathbb{R})$, then $\hat{f} \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$. Hence $\mathcal{F} : f \to \hat{f}$ is an isometric map from a dense subset of $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$.
- ▶ Recall that {e_{bn}}_{n∈Z} is a tight frame for L²[1/2, 1/2], note here we restrict {e_{bn}}_{n∈Z} to be itself within this interval and zero outside. Then {s_{bn}} = {𝓕⁻¹(e_{bn}χ)} is a tight frame for PaleyWiener space:

$$PW = \{ f \in L^2(\mathbb{R}) : supp(\hat{f}) \subseteq [1/2, 1/2] \}$$

Hence for all $f \in PW$, $f = b \sum_{n \in Z} \langle f, s_{bn} \rangle s_{bn}$ and then we work out the calculation to get the Shannon Sampling theorem!

Classical Sampling Theorem

Shannon Sampling Theorem: Fix $f \in PW$, i.e., $f \in L^2(\mathbb{R})$ is bandlimited to [1/2, 1/2]. Then for $0 < b \leq 1$,

$$f(x) = b \sum_{n \in \mathbb{Z}} \langle f, s_{bn} \rangle s_{bn}(x) = b \sum_{n \in \mathbb{Z}} f(bn) \frac{\sin \pi (x - bn)}{\pi (x - bn)}$$

Frames and Time-Frequency Analysis

Preconditioning of Finite Frames

Sparse Fourier Transform

Introduction to Phase Retrieval Problem

Preconditioning of Finite Frames

FUNTFs

- Recall that a frame $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$ is a tight frame for \mathbb{R}^N if A = B.
- If Φ is a tight frame of unit-norm vectors, that is, ||φ_k|| = 1, we say that Φ is a finite unit-norm tight frame (FUNTF). In this case, we can reconstruct x by

$$x = \frac{N}{M} \sum_{k=1}^{M} \langle x, \varphi_k \rangle \varphi_k.$$

- Why are we interested in FUNTF?
- It turns out that it's closely related to the condition number of the frame.

Frame Potential

Theorem (Benedetto and Fickus, 2003)

For each $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$, such that $\|\varphi_k\| = 1$ for each k, we have

$$FP(\Phi) = \sum_{i=1}^{M} \sum_{k=1}^{k} |\langle \varphi_j, \varphi_k \rangle|^2 \ge \frac{M}{N} \max(M, N)$$

Furthermore,

• If $M \leq N$, the minimum of FP is M and is achieved by orthonormal systems for \mathbb{R}^N with M elements.

• If $M \ge N$, the minimum of FP is $\frac{M^2}{N}$ and is achieved by FUNTFs. $FP(\Phi)$ is the frame potential.

Thus FUNTFs can be considered 'optimally conditioned' frames. In particular the condition number of the frame operator is 1.

Scalable Frame and Optimization

Definition: A frame $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$ is scalable, if $\exists \{c_k\}_{k=1}^M \subset \mathbb{R}^N$ such that $\{c_k\varphi_k\}_{k=1}^M$ is a tight frame for \mathbb{R}^N .

Conclusion: a frame is scalable iff there exists an $M \times M$ diagonal matrix $C = diag(c_k)$ s.t. $\Phi X^2 \Phi^T = \alpha I$, for some constant α . Define a measure of scalability,

$$D_{\Phi} := \min_{C \ge 0 \text{ diagonal}} \|\Phi C \Phi^T - I\|_F.$$

 Φ is scalable iff $D_{\Phi} = 0$.

. . .

Where do we need this? It's said that it can be used in improving NDE scheme, as people may want frames with low condition numbers.

Preconditioning of Finite Frames

Frames and Time-Frequency Analysis

Preconditioning of Finite Frames

Sparse Fourier Transform

Introduction to Phase Retrieval Problem

Sparse Fourier Transform

Basics

- What do we mean when we say sparse Fourier transform?
- Given any vector $x \in \mathbb{C}^N$, is there a sampling set $S \subset [N]$ with size |S| = m < n and an algorithm \mathcal{A} such that the algorithm on input x(S) can find a(n approximation) k term Fourier representation of x?
- We can tell immediately that sampling is critical here.
- ► Two approaches:
 - Mathematical Perspective: R.I.P. to L_1 optimization.
 - Computer Science Perspective: Fast Fourier Sampling ('Divide-and-Conquer').

SFT via L_1 optimization

Conclusion: If \mathcal{F}_S (=DFT matrix restricted on rows in sample set S) satisfy R.I.P, then for all x there are algorithms that return \hat{x} with

$$||x - \hat{x}||_2 \le \frac{C}{\sqrt{k}} ||x - x_k||_1$$

Where $x_k = \text{best } k - \text{term Fourier representation, } |S| = \Theta(k \log^c(n/k))$, C is a constant.

- ► L₁ minimization via convex optimization approach.
- CoSaMP (compressive sampling matching pursuit 2008). (Greedy)
- ► IHT (iterative hard thresholding, 2008), $y = \Phi x + e$, x K- sparse, $x_{n+1} = H_k(x_n + \Phi^*(y - \Phi x_n))$
- OMP (by Anna Gilbert et al. 2007) (Greedy)

Cons: Inefficient! (Really?)

SFT via Fast Fourier Sampling

This idea (maybe) comes from the classical 'divide-and-conquer' binary search algorithm in CS. Suppose the length of signal is n, it can be factored into $a_1, a_2, ..., a_m$, all are primes, Then the number samples we need (to identify one frequency) are just $\sum_{i=1}^{m} a_i$. Briefly speaking, all sparse FFTs (repeatedly) perform some version of the three following steps:

- identification of frequencies whose Fourier coefficients are large in magnitude (typically a randomized sub-routine),
- accurate estimation of the Fourier coefficients of the frequencies identified in the first step,
- subtraction of the contribution of the partial Fourier representation computed by the first two steps from the entries of f before any subsequent repetitions.

Frames and Time-Frequency Analysis

Preconditioning of Finite Frames

Sparse Fourier Transform

Introduction to Phase Retrieval Problem

Introduction to Phase Retrieval Problem

Phase Retrieval Problem Formulate

Suppose we have signal $x_0 \in \mathbb{C}^n$, and quadratic measure $\mathbb{A}(x_0) = \{|\langle a_k, x_0 \rangle|^2 : k = 1, ..., m\}$. Phase retrieval problem is a feasibility problem:

find xobeying $\mathbb{A}(x) = \mathbb{A}(x_0) := b$

Indeed, let $X = xx^*$

$$|\langle a_k, x \rangle|^2 = Tr(x^*a_ka_k^*x) = Tr(a_ka_k^*xx^*) := Tr(A_kx)$$

Then we rewrite the optimization problem:

find X subject to $\mathcal{A}(x) = b, X \succeq 0, rank(X) = 1$

Which is equivalent to

minimize rank(X)subject to $\mathcal{A}(x) = b, X \succeq 0$

Introduction to Phase Retrieval Problem