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Frame Definition

Definition: A sequence {xn}n∈N in a Hilbert space H is a frame for H if
there exist constants A, B > 0 such that the following pseudo-Plancherel
formula holds for ∀x ∈ H:

A‖x‖2 ≤
∞∑
n=1

|〈x, xn〉|2 ≤ B‖x‖2.

I Plancherel Equality is ‖x‖2 =
∑∞
n=1 |〈x, xn〉|2;

I A and B are called frame bounds. If A = B, the frame is called a
tight frame, if A = B = 1, it’s Parseval frame.

I A frame is exact if it fails to be a frame whenever any single element
is deleted from the sequence.

I ONB ⇔ exact Parseval frame.
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Example

I Mercedes frame: Let H = R2, and set x1 = (0, 1),

x2 = (−
√

3
2 ,−

1
2 ), x3 = (

√
3

2 ,−
1
2 ), then

∑3
n=1 |〈x, xn〉|2 = 3

2‖x‖
2

for all x ∈ R2.
If we set c = (2/3)1/2, then {cx1, cx2, cx3} is a tight frame. It’s not
orthogonal, not a basis (not unique representation).

I Trigonometric system: Let H = L2[0, 1], 〈f, g〉 =
∫ 1

0
f(t)g(t)dt.

Then {en}n∈Z = {e2πint}n∈Z is an ONB for H.

I What’s more, it can be shown that, given b < 1,
{ebn}n∈Z = {e2πibnt}n∈Z is a tight frame for L2[0, 1], with
A = B = 1/b.
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Properties of FT

I If f ∈ C2
c (R), then f̂ ∈ L2(R) and ‖f̂‖2 = ‖f‖2. Hence F : f → f̂

is an isometric map from a dense subset of L2(R) into L2(R).

I Recall that {ebn}n∈Z is a tight frame for L2[1/2, 1/2], note here we
restrict {ebn}n∈Z to be itself within this interval and zero outside.
Then {sbn} = {F−1(ebnχ)} is a tight frame for PaleyWiener space:

PW = {f ∈ L2(R) : supp(f̂) ⊆ [1/2, 1/2]}

Hence for all f ∈ PW , f = b
∑
n∈Z〈f, sbn〉sbn and then we work

out the calculation to get the Shannon Sampling theorem!
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Classical Sampling Theorem

Shannon Sampling Theorem: Fix f ∈ PW, i.e., f ∈ L2(R) is
bandlimited to [1/2, 1/2 ]. Then for 0 < b ≤ 1,

f(x) = b
∑
n∈Z
〈f, sbn〉sbn(x) = b

∑
n∈Z

f(bn)
sinπ(x− bn)

π(x− bn)
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FUNTFs

I Recall that a frame Φ = {ϕk}Mk=1 ⊆ RN is a tight frame for RN if
A = B.

I If Φ is a tight frame of unit-norm vectors, that is, ‖ϕk‖ = 1, we say
that Φ is a finite unit-norm tight frame (FUNTF). In this case, we
can reconstruct x by

x =
N

M

M∑
k=1

〈x, ϕk〉ϕk.

I Why are we interested in FUNTF?

I It turns out that it’s closely related to the condition number of the
frame.
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Frame Potential

Theorem (Benedetto and Fickus, 2003)
For each Φ = {ϕk}Mk=1 ⊆ RN , such that ‖ϕk‖ = 1 for each k, we have

FP (Φ) =

M∑
i=1

k∑
k=1

|〈ϕj , ϕk〉|2 ≥
M

N
max(M,N)

Furthermore,
• If M ≤ N , the minimum of FP is M and is achieved by orthonormal
systems for RN with M elements.

• If M ≥ N , the minimum of FP is M2

N and is achieved by FUNTFs.
FP (Φ) is the frame potential.

Thus FUNTFs can be considered ’optimally conditioned’ frames. In
particular the condition number of the frame operator is 1.
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Scalable Frame and Optimization

Definition: A frame Φ = {ϕk}Mk=1 ⊆ RN is scalable, if ∃{ck}Mk=1 ⊂ RN
such that {ckϕk}Mk=1 is a tight frame for RN .
...
Conclusion: a frame is scalable iff there exists an M ×M diagonal
matrix C = diag(ck) s.t. ΦX2ΦT = αI, for some constant α. Define a
measure of scalability,

DΦ := min
C≥0 diagonal

‖ΦCΦT − I‖F .

Φ is scalable iff DΦ = 0.
Where do we need this? It’s said that it can be used in improving NDE
scheme, as people may want frames with low condition numbers.

Preconditioning of Finite Frames 10



Outline

Frames and Time-Frequency Analysis

Preconditioning of Finite Frames

Sparse Fourier Transform

Introduction to Phase Retrieval Problem

Sparse Fourier Transform 11



Basics

I What do we mean when we say sparse Fourier transform?

I Given any vector x ∈ CN , is there a sampling set S ⊂ [N ] with size
|S| = m < n and an algorithm A such that the algorithm on input
x(S) can find a(n approximation) k term Fourier representation of x?

I We can tell immediately that sampling is critical here.

I Two approaches:

– Mathematical Perspective: R.I.P. to L1 optimization.
– Computer Science Perspective: Fast Fourier Sampling

(’Divide-and-Conquer’).
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SFT via L1 optimization

Conclusion: If FS (=DFT matrix restricted on rows in sample set S)
satisfy R.I.P, then for all x there are algorithms that return x̂ with

‖x− x̂‖2 ≤
C√
k
‖x− xk‖1

Where xk = best k− term Fourier representation, |S| = Θ(k logc(n/k)),
C is a constant.

I L1 minimization via convex optimization approach.

I CoSaMP (compressive sampling matching pursuit 2008). (Greedy)

I IHT (iterative hard thresholding, 2008), y = Φx+ e, x K− sparse,
xn+1 = Hk(xn + Φ∗(y − Φxn))

I OMP (by Anna Gilbert et al. 2007) (Greedy)

Cons: Inefficient! (Really?)
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SFT via Fast Fourier Sampling

This idea (maybe) comes from the classical ’divide-and-conquer’ binary
search algorithm in CS. Suppose the length of signal is n, it can be
factored into a1, a2, ..., am, all are primes, Then the number samples we
need (to identify one frequency) are just

∑m
i=1 ai.

Briefly speaking, all sparse FFTs (repeatedly) perform some version of
the three following steps:

I identification of frequencies whose Fourier coefficients are large in
magnitude (typically a randomized sub-routine),

I accurate estimation of the Fourier coefficients of the frequencies
identified in the first step,

I subtraction of the contribution of the partial Fourier representation
computed by the first two steps from the entries of f before any
subsequent repetitions.
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Phase Retrieval Problem Formulate

Suppose we have signal x0 ∈ Cn, and quadratic measure
A(x0) = {|〈ak, x0〉|2 : k = 1, ...,m}. Phase retrieval problem is a
feasibility problem:

find x

obeying A(x) = A(x0) := b

Indeed, let X = xx∗

|〈ak, x〉|2 = Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗) := Tr(Akx)

Then we rewrite the optimization problem:

find X

subject to A(x) = b,X � 0, rank(X) = 1

Which is equivalent to

minimize rank(X)

subject to A(x) = b,X � 0
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