Frame Theory

Yue Zhang

This review is based on materials in 2015 IMA summer school: modern harmonic analysis and its applications .

September 10, 2015

[Frames and Time-Frequency Analysis](#page-1-0)

[Preconditioning of Finite Frames](#page-6-0)

[Sparse Fourier Transform](#page-10-0)

[Introduction to Phase Retrieval Problem](#page-14-0)

Frame Definition

Definition: A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a Hilbert space H is a frame for H if there exist constants $A, B > 0$ such that the following *pseudo-Plancherel* formula holds for $\forall x \in H$:

$$
A||x||^{2} \le \sum_{n=1}^{\infty} |\langle x, x_{n} \rangle|^{2} \le B||x||^{2}.
$$

- ▶ Plancherel Equality is $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$;
- A and B are called frame bounds. If $A = B$, the frame is called a tight frame, if $A = B = 1$, it's Parseval frame.
- \triangleright A frame is *exact* if it fails to be a frame whenever any single element is deleted from the sequence.
- ^I ONB ⇔ exact Parseval frame.

Example

- \blacktriangleright Mercedes frame: Let $H = \mathbb{R}^2$, and set $x_1 = (0, 1)$, $x_2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2}), x_3 = (\frac{\sqrt{3}}{2}, -\frac{1}{2}), \text{ then } \sum_{n=1}^3 |\langle x, x_n \rangle|^2 = \frac{3}{2} ||x||^2$ for all $x \in \mathbb{R}^2$. If we set $c = (2/3)^{1/2}$, then $\{cx_1, cx_2, cx_3\}$ is a tight frame. It's not orthogonal, not a basis (not unique representation).
- **Figonometric system:** Let $H = L^2[0,1]$, $\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt$. Then $\{e_n\}_{n\in\mathbb{Z}}=\{e^{2\pi int}\}_{n\in\mathbb{Z}}$ is an ONB for H .
- \blacktriangleright What's more, it can be shown that, given $b < 1$, ${e_{bn}}_{n \in \mathbb{Z}} = {e^{2\pi ibnt}}_{n \in \mathbb{Z}}$ is a tight frame for $L^2[0,1]$, with $A = B = 1/b$.

Properties of FT

- ► If $f \in C_c^2(\mathbb{R})$, then $\hat{f} \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = \|f\|_2$. Hence $\mathcal{F} : f \to \hat{f}$ is an isometric map from a dense subset of $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$.
- ▶ Recall that $\{e_{bn}\}_{n\in Z}$ is a tight frame for $L^2[1/2,1/2]$, note here we restrict ${e_{bn}}_{n \in \mathbb{Z}}$ to be itself within this interval and zero outside. Then $\{s_{bn}\}=\{\mathcal{F}^{-1}(e_{bn}\chi)\}$ is a tight frame for PaleyWiener space:

$$
PW = \{ f \in L^2(\mathbb{R}) : supp(\hat{f}) \subseteq [1/2, 1/2] \}
$$

Hence for all $f\in PW$, $f=b\sum_{n\in Z}\langle f,s_{bn}\rangle s_{bn}$ and then we work out the calculation to get the Shannon Sampling theorem!

Classical Sampling Theorem

Shannon Sampling Theorem: Fix $f \in PW$, i.e., $f \in L^2(\mathbb{R})$ is bandlimited to [1/2, 1/2]. Then for $0 < b \le 1$,

$$
f(x) = b \sum_{n \in \mathbb{Z}} \langle f, s_{bn} \rangle s_{bn}(x) = b \sum_{n \in \mathbb{Z}} f(bn) \frac{\sin \pi (x - bn)}{\pi (x - bn)}
$$

[Frames and Time-Frequency Analysis](#page-1-0)

[Preconditioning of Finite Frames](#page-6-0)

[Sparse Fourier Transform](#page-10-0)

[Introduction to Phase Retrieval Problem](#page-14-0)

[Preconditioning of Finite Frames](#page-6-0) 7 and 2008 7

FUNTFs

- ► Recall that a frame $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$ is a tight frame for \mathbb{R}^N if $A = B$.
- If Φ is a tight frame of unit-norm vectors, that is, $\|\varphi_k\|=1$, we say that Φ is a finite unit-norm tight frame (FUNTF). In this case, we can reconstruct x by

$$
x = \frac{N}{M} \sum_{k=1}^{M} \langle x, \varphi_k \rangle \varphi_k.
$$

- \triangleright Why are we interested in FUNTF?
- \triangleright It turns out that it's closely related to the condition number of the frame.

Frame Potential

Theorem (Benedetto and Fickus, 2003) For each $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$, such that $\|\varphi_k\| = 1$ for each k, we have

$$
FP(\Phi) = \sum_{i=1}^{M} \sum_{k=1}^{k} |\langle \varphi_j, \varphi_k \rangle|^2 \ge \frac{M}{N} \max(M, N)
$$

Furthermore,

• If $M \le N$, the minimum of FP is M and is achieved by orthonormal systems for \mathbb{R}^N with M elements.

• If $M \geq N$, the minimum of FP is $\frac{M^2}{N}$ and is achieved by FUNTFs. $FP(\Phi)$ is the frame potential.

Thus FUNTFs can be considered 'optimally conditioned' frames. In particular the condition number of the frame operator is 1.

Scalable Frame and Optimization

Definition: A frame $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N$ is scalable, if $\exists \{c_k\}_{k=1}^M \subset \mathbb{R}^N$ such that $\{c_k\varphi_k\}_{k=1}^M$ is a tight frame for $\mathbb{R}^N.$

Conclusion: a frame is scalable iff there exists an $M \times M$ diagonal matrix $C=diag(c_k)$ s.t. $\Phi X^2 \Phi^T=\alpha I$, for some constant $\alpha.$ Define a measure of scalability,

$$
D_\Phi:=\min_{C\geq 0\;\text{diagonal}}\|\Phi C\Phi^T-I\|_F.
$$

 Φ is scalable iff $D_{\Phi} = 0$.

...

Where do we need this? It's said that it can be used in improving NDE scheme, as people may want frames with low condition numbers.

[Preconditioning of Finite Frames](#page-6-0) 10 and 200 minutes and 200 minutes of $\overline{10}$

[Frames and Time-Frequency Analysis](#page-1-0)

[Preconditioning of Finite Frames](#page-6-0)

[Sparse Fourier Transform](#page-10-0)

[Introduction to Phase Retrieval Problem](#page-14-0)

[Sparse Fourier Transform](#page-10-0) **11**

Basics

- \triangleright What do we mean when we say sparse Fourier transform?
- ► Given any vector $x\in\mathbb{C}^{N}$, is there a sampling set $S\subset[N]$ with size $|S| = m < n$ and an algorithm A such that the algorithm on input $x(S)$ can find a(n approximation) k term Fourier representation of x?
- \triangleright We can tell immediately that sampling is critical here.
- \blacktriangleright Two approaches:
	- Mathematical Perspective: R.I.P. to L_1 optimization.
	- Computer Science Perspective: Fast Fourier Sampling ('Divide-and-Conquer').

SFT via L_1 optimization

Conclusion: If \mathcal{F}_S (=DFT matrix restricted on rows in sample set S) satisfy R.I.P, then for all x there are algorithms that return \hat{x} with

$$
||x - \hat{x}||_2 \le \frac{C}{\sqrt{k}} ||x - x_k||_1
$$

Where $x_k = \text{best } k - \text{ term Fourier representation}, |S| = \Theta(k \log^c(n/k)),$ C is a constant.

- \blacktriangleright L_1 minimization via convex optimization approach.
- \triangleright CoSaMP (compressive sampling matching pursuit 2008). (Greedy)
- \triangleright IHT (iterative hard thresholding, 2008), $y = \Phi x + e$, $x K -$ sparse, $x_{n+1} = H_k(x_n + \Phi^*(y - \Phi x_n))$
- ▶ OMP (by Anna Gilbert et al. 2007) (Greedy)

Cons: Inefficient! (Really?)

SFT via Fast Fourier Sampling

This idea (maybe) comes from the classical 'divide-and-conquer' binary search algorithm in CS. Suppose the length of signal is n, it can be factored into $a_1, a_2, ..., a_m$, all are primes, Then the number samples we need (to identify one frequency) are just $\sum_{i=1}^m a_i.$ Briefly speaking, all sparse FFTs (repeatedly) perform some version of the three following steps:

- \triangleright identification of frequencies whose Fourier coefficients are large in magnitude (typically a randomized sub-routine),
- \triangleright accurate estimation of the Fourier coefficients of the frequencies identified in the first step,
- \triangleright subtraction of the contribution of the partial Fourier representation computed by the first two steps from the entries of f before any subsequent repetitions.

[Frames and Time-Frequency Analysis](#page-1-0)

[Preconditioning of Finite Frames](#page-6-0)

[Sparse Fourier Transform](#page-10-0)

[Introduction to Phase Retrieval Problem](#page-14-0)

[Introduction to Phase Retrieval Problem](#page-14-0) 15

Phase Retrieval Problem Formulate

Suppose we have signal $x_0\in\mathbb{C}^n$, and quadratic measure $\mathbb{A}(x_0)=\{|\langle a_k, x_0\rangle|^2: k=1,...,m\}.$ Phase retrieval problem is a feasibility problem:

> find x obeying $\mathbb{A}(x) = \mathbb{A}(x_0) := b$

Indeed, let $X = xx^*$

$$
|\langle a_k, x \rangle|^2 = Tr(x^* a_k a_k^* x) = Tr(a_k a_k^* x x^*) := Tr(A_k x)
$$

Then we rewrite the optimization problem:

find X subject to $A(x) = b, X \succeq 0, rank(X) = 1$

Which is equivalent to

minimize $rank(X)$ subject to $A(x) = b, X \succeq 0$

[Introduction to Phase Retrieval Problem](#page-14-0) 16 and 16 and