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L1 minimization

I Why do we do `1 minimization? Sparsity? Why?

I Consider minimize
∑
φ(ri), subject to r = Ax− b, where

A ∈ Rm×n, b ∈ Rm. (From Boyd’s class EE364a, Lec6)
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Side story

I Can we combine their advantages? Huber penalty function, (mark
here, not quite developed yet)

I Easy check with CVX, a Matlab toolbox.

A = rand(100,30);

b = rand(100);

cvx_begin

variables r(100) x(30)

minimize( norm(r,1) )

A*x-b==r

cvx_end

hist(r)
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Precursors
(random selected concepts (should know) before moving forward)

I Equality constrained convex problem:

minimize f(x)
subject to Ax = b,

Lagrangian:
L(x, y) = f(x) + yT (Ax− b)

Dual function (offers lower bound)

g(y) = inf
x
L(x, y) = −f∗(−AT y)− bT y

f∗(y) is the conjugate function of f(x), defined as
supx(y

Tx− f(x)). Recall Dr. Guo’s lecture notes, the image of
conjugate function, self-check with CO ex3.36.
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Precursors

I If f(x) twice differentiable, strong duality holds (easy check with
KKT conditions), of course iff there exists feasible solutions.

I Even strong duality doesn’t hold for some cases, it still helps if we
know the gap. e.g., interior-point methods, with which we can solve
inequality constrained convex problems by building up a barrier near
the boundary. More details see Boyd’s EE364a Lec12.

I As the dual function offers a lower bound, we’ll want to maximize it.
Method: gradient ascent.

I g(y) = infx L(x, y) indicates ∇g = Ax∗ − b.

I side story, if g is not differentiable, take subgradient. More details
see Boyd’s EE364b Lec1.
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A Primal-Dual algorithm

I A first look framework

minimize f(x)
subject to Ax = b,

I Iterative:
xk+1 := argminx L(x, y

k)
yk+1 := yk + αk(Axk+1 − b)

I However, the x step doesn’t necessarily return a feasible x, e.g.,
what if L(x, y) is affine in x?

I Augmented Lagrangian:

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)‖Ax− b‖22.

I However, there is a cost: L(x, y) can be seperable if both f(x) and

A are seperable, i.e.f(x) =
∑N
i=1 fi(xi), Ax =

∑N
i=1Aixi is block

diagonal. However, the augmented Lρ(x, y) won’t. ( I think this is
what Julia means in Ben’s defense.)ADMM 8



ADMM

I WLOG, we form the problem:

minimize f(x) + g(z)
subject to Ax+Bz = c

I Augmented Lagrangian:

Lρ(x, y) = f(x) + g(z) + yT (Ax+Bz− c) + (ρ/2)‖Ax+Bz− c‖22.

I Iterative:
xk+1 := argminx Lρ(x, z

k, yk)
zk+1 := argminz Lρ(x

k+1, z, yk)
yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

I Note that (zk+1, yk+1) is a function of (zk, yk). xk+1 is just an
intermediate step.
BTW, as ρ is fixed, its value doesn’t make quite a difference (as
long as it’s reasonable). Boyd chooses ρ to be 1 while Jing chooses
0.01, tested, almost the same performance (iteration numbers and
accuracy). Of course this may change with scale of problems.
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Convergence

I Under reasonable assumptions: problem solvable, (f,g are nice, L0

has a saddle point), ADMM iterates satisfy:

– Residual convergence. rk = Axk +Bk − c converges. (approach
feasibility)

– Objective convergence. f(xk) + g(zk) converges to optimal value.
– Dual variable convergence. yk converges.

I However, xk and zk doesn’t necessarily converge. We’ll see the
reason from the stop criterion.
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Stopping Criteria

I Feasibility of primal and dual variables

primal Ax∗ +Bz∗ − c = 0
dual ∂f(x∗) +AT y∗ = 0
dual ∂g(z∗) +BT y∗ = 0

I This can be derived similarly as we did for dual gradient ascent.

I What’s interesting is the following, since xk+1 minimizes augmented
Lρ(x, z

k, yk), we have

∂f(xk+1) +AT yk+1 + ρATB(zk − zk+1) = 0

Which says when dual is feasible, z falls into ATB’s null space,
therefore not necessary to converge.
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Faster

I Varying penalty parameter. Change ρ to ρk,

ρk+1 :=


τ incrρk : if ‖rk‖2 > µ‖sk‖2
ρkτdecr : if ‖sk‖2 > µ‖rk‖2
ρk : otherwise,

Where µ > 1, τ incr > 1 and τdecr > 1. Typical choice is µ = 10,
τ incr = τdecr = 2.

I This is due to the different role of ρ played in primal and dual
problems. In short word, it cannot be too big or too small.

ADMM 12



Extension

I Change augment terms (I have no idea why this is an improvement,
mimic conjugate gradient?). Change normal augment term ‖r‖22 to
rTPr, where P is symmetric p.d.

I Over-relaxation. In the z− and y−updates, the quantity Axk+1 can
be replaced with

αkAxk+1 − (1− αk)(Bzk − c)

I Inexact minimization. ADMM converges even x− and
z−minimization updates don’t carry out exactly. That is, when you
use iteration methods to minimize the x− and z− subproblems, you
can terminate early (if proper). Actually, this is what some people
do in large scale problems. See video talk.
http://videolectures.net/nipsworkshops2011_boyd_

multipliers/?q=boyd. It starts at 01:00:40 if you’re on hurry.
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Related Algorithms

I This is something I want to point out but I don’t know anything
about them. This is interesting because we may go to its equivalent
/ or related algorithms, investigate what problems people are dealing
with using those algorithms and therefore have a broad idea where
ADMM can further apply.

– operator splitting methods (Douglas, Peaceman, Rachford, Lions,
Mercier, . . . 1950s, 1979)

– proximal point algorithm (Rockafellar 1976)
– Dykstras alternating projections algorithm (1983)
– Spingarns method of partial inverses (1985)
– Rockafellar-Wets progressive hedging (1991)
– proximal methods (Rockafellar, many others, 1976present)
– Bregman iterative methods (2008present)
– most of these are special cases of the proximal point algorithm
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Related Problems

I This is something I definitely should point out and I know
something(a little) about. ( I will write more about these problems
in the future)

– Basis pursuit
– Lasso ( Least absolute shrinkage and selection operator) They just

want to make it lasso...
– Support vector machine (in a sparse view).
– Sparse Inverse Covariance Selection
– TGV 2

α and Dr. Guo’s paper, including possible parallel scheme.
– Sparse modeling, especially sparse coding in deep learning. Some

interesting videos may be helpful from https://www.youtube.com/

playlist?list=PLZ9qNFMHZ-A79y1StvUUqgyL-O0fZh2rs. This is
an online course offered by Guillermo Sapiro. Specifically, lectures
about sparse modeling and compressive sensing.
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