ADMM Review

Yue Zhang

This review is based on but not limited to the paper:
'Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers’ by Stephen Boyd et al.

(* Questions are appreciated *)
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L1 minimization

» Why do we do ¢; minimization? Sparsity? Why?

» Consider minimize > ¢(r;), subject to r = Az — b, where
A e R™*™ be R™. (From Boyd's class EE364a, Lec6)

example (m = 100, n = 30): histogram of residuals for penalties
$(u) =ul, ¢(u) =u?,  ¢(u) = max{0,|u[—a}, $(u) = —log(1—u?)
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Side story

» Can we combine their advantages? Huber penalty function, (mark
here, not quite developed yet)

» Easy check with CVX, a Matlab toolbox.

A = rand(100,30);
b = rand(100);

cvx_begin

variables r(100) x(30)
minimize( norm(r,1) )
Axx-b==r

cvx_end

hist(r)
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Precursors

(random selected concepts (should know) before moving forward)

» Equality constrained convex problem:

minimize  f(x)
subject to Ax =0,

Lagrangian:
L(z,y) = f(z) +y" (Az —b)

Dual function (offers lower bound)

g(y) = inf L(z,y) = —f*(-ATy) = b"y

f*(y) is the conjugate function of f(x), defined as
sup, (yTz — f(z)). Recall Dr. Guo's lecture notes, the image of
conjugate function, self-check with CO ex3.36.
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Precursors
» If f(x) twice differentiable, strong duality holds (easy check with
KKT conditions), of course iff there exists feasible solutions.
» Even strong duality doesn't hold for some cases, it still helps if we
know the gap. e.g., interior-point methods, with which we can solve
inequality constrained convex problems by building up a barrier near

the boundary. More details see Boyd's EE364a Lecl2.

» As the dual function offers a lower bound, we'll want to maximize it.
Method: gradient ascent.

» g(y) =inf, L(x,y) indicates Vg = Ax* — b.

> side story, if g is not differentiable, take subgradient. More details
see Boyd's EE364b Lecl.
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A Primal-Dual algorithm

> A first look framework
minimize  f(x)
subject to Ax =0,

> lterative:

F*t1 = argmin, L(z, y*)

yk+1 — yk + ak(A.’E]H_l _ b)

» However, the x step doesn’t necessarily return a feasible x, e.g.,
what if L(x,y) is affine in x?

» Augmented Lagrangian:
Ly(z,y) = f(x) +y" (Az = b) + (p/2)]| Az — b]}3.

» However, there is a cost: L(x,y) can be seperable if both f(x) and

A are seperable, i.e.f(x) = Zi\il filxy), Ax = Zfil A;x; is block

diagonal. However, the augmented L,(z,y) won't. ( | think this is
ADMMwhat Julia means in Ben's defense.)



ADMM

» WLOG, we form the problem:

minimize  f(x) + g(z)
subject to Ax+ Bz =c

» Augmented Lagrangian:
Ly(z,y) = f(2) +9(2) +y" (Az+ Bz — ) + (p/2)| Az + Bz — c]3.

> lterative:
k+1

okl = argmin, L,(z, 2%, y*)
ZF 1= argmin, L,(z*1, 2, y")

YL = yF b p(AzhHT 4 BT - o)

» Note that (2¥*1,4%+1) is a function of (2*,y*). xF*+1 is just an
intermediate step.
BTW, as p is fixed, its value doesn't make quite a difference (as
long as it's reasonable). Boyd chooses p to be 1 while Jing chooses
0.01, tested, almost the same performance (iteration numbers and
accuracy). Of course this may change with scale of problems.
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Convergence

» Under reasonable assumptions: problem solvable, (f,g are nice, Lg
has a saddle point), ADMM iterates satisfy:
— Residual convergence. r* = Az® + B* — ¢ converges. (approach
feasibility)

— Objective convergence. f(z"*) + g(z*) converges to optimal value.

— Dual variable convergence. y" converges.

» However, z* and z* doesn’t necessarily converge. We'll see the
reason from the stop criterion.

ADMM
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Stopping Criteria

» Feasibility of primal and dual variables

primal Az* 4+ Bz*—c=0
dual  9f(z*)+ ATy* =0
dual  9g(z*) + BTy* =0

» This can be derived similarly as we did for dual gradient ascent.

» What's interesting is the following, since 2**! minimizes augmented
L,(z,2%,y*), we have

Of (1) + ATy 4 pATB(ZF — M)y =0

Which says when dual is feasible, z falls into AT B's null space,
therefore not necessary to converge.

ADMM
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Faster

» Varying penalty parameter. Change p to p*,

riner i s > s
P = S et s > gl
ok : otherwise,

Where 1 > 1, 77" > 1 and 79" > 1. Typical choice is = 10,

Finer — Tdecr =9

» This is due to the different role of p played in primal and dual
problems. In short word, it cannot be too big or too small.

ADMM
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Extension

» Change augment terms (| have no idea why this is an improvement,
mimic conjugate gradient?). Change normal augment term ||7||3 to
rT Pr, where P is symmetric p.d.

k+1

» Over-relaxation. In the z— and y—updates, the quantity Ax can

be replaced with
aF Azt — (1 — o®)(B2F - ¢)

> Inexact minimization. ADMM converges even x— and
z—minimization updates don't carry out exactly. That is, when you
use iteration methods to minimize the x— and z— subproblems, you
can terminate early (if proper). Actually, this is what some people
do in large scale problems. See video talk.
http://videolectures.net/nipsworkshops2011_boyd_
multipliers/?q=boyd. It starts at 01:00:40 if you're on hurry.
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Related Algorithms

» This is something | want to point out but | don't know anything
about them. This is interesting because we may go to its equivalent
/ or related algorithms, investigate what problems people are dealing
with using those algorithms and therefore have a broad idea where
ADMM can further apply.

ADMM

operator splitting methods (Douglas, Peaceman, Rachford, Lions,
Mercier, . . . 1950s, 1979)

proximal point algorithm (Rockafellar 1976)

Dykstras alternating projections algorithm (1983)

Spingarns method of partial inverses (1985)

Rockafellar-Wets progressive hedging (1991)

proximal methods (Rockafellar, many others, 1976present)
Bregman iterative methods (2008present)

most of these are special cases of the proximal point algorithm
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Related Problems

> This is something | definitely should point out and | know
something(a little) about. ( | will write more about these problems
in the future)

ADMM

Basis pursuit

Lasso ( Least absolute shrinkage and selection operator) They just
want to make it lasso...

Support vector machine (in a sparse view).

Sparse Inverse Covariance Selection

TGV?2 and Dr. Guo's paper, including possible parallel scheme.
Sparse modeling, especially sparse coding in deep learning. Some
interesting videos may be helpful from https://www.youtube.com/
playlist?list=PLZ9gNFMHZ-A79y1StvUUqgyL-00fZh2rs. This is
an online course offered by Guillermo Sapiro. Specifically, lectures
about sparse modeling and compressive sensing.
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